605.629.81 - Programming Languages

Computer Science
Spring 2024

Description

A programming language provides instructions to a computing device to perform tasks. A language has a vocabulary and a set of grammatical rules to shape and frame the communication between the user and the computing device. The Programming Languages course compares and contrasts a wide variety of features of numerous old and new programming languages, including programming language history; formal methods of describing syntax and semantics; names, binding, type checking, and scopes; data types; expressions and assignment statements; statement-level control structures; design and implementation of subprograms; lambda calculus; exception handling; support for object-oriented programming; and concurrency. Our course will also introduce logic programming and theorem proving through Prolog, Objective Caml, and Coq framework. The course will survey the fundamental concepts underlying modern programming languages with the goal of understanding paradigms, but not vocational training in any given language. Several examples will be drawn from C, C++, Java, Python, ML, JavaScript, Scheme, Prolog, and Coq.

Expanded Course Description

Being no different from a spoken language, a programming language is used for providing instructions to a computing device to perform tasks. A language has a vocabulary and a set of grammatical rules to shape and frame the communication between the user and the computing device.

The Programming Languages course compares and contrasts a wide variety of features of numerous old and new programming languages, including programming language history; formal methods of describing syntax and semantics; names, binding, type checking, and scopes; data types; expressions and assignment statements; statement-level control structures; design and implementation of subprograms; exception handling; support for object-oriented programming; and concurrency.

We will survey the fundamental concepts underlying modern programming languages with the goal of understanding paradigms, but not vocational training in any given language. Several examples will be drawn from C, C++, Java, Python, ML, JavaScript, Scheme, Prolog, and Coq.

Instructor

Profile photo of Erhan Guven.

Erhan Guven

guven6@gmail.com

Course Structure

The course materials are divided into modules, one for each week of the course. All course materials and assignments will be housed in Canvas and Microsoft Teams. The module content can be accessed by clicking Course Modules on the left menu. A module will have several sections including the overview, content, readings, discussions, and assignments. You are encouraged to preview all sections of the module before starting. Most modules run for a period of seven (7) days, exceptions are noted in the Course Outline. You should regularly check the Calendar and Announcements for assignment due dates.

Course Topics

Course Goals

Introduce new ways of thinking about programming. Typically, computer science students start out learning to program in an imperative model of programming where variables are created and updated as a program executes. However, there are other ways to program and use programming language paradigms applied to problem solving.

Course Learning Outcomes (CLOs)

Textbooks

Concepts of Programming Languages, (11th edition) by Sebesta, Addison-Wesley, 2015. ISBN-13: 978-0133943023

Student Coursework Requirements

Mini-Report Activities (20%)

About 3 over the semester, will run for about 3 weeks each – student generated – students post research/resources for discussion – reports will be produced by student teams.

Assignments (40%)

Assignments will include real-world problems. Although the Assignments will usually reflect the current material, I will also give on occasion a brain-building problem that may no direct relation to the material but rather may require basic logical reasoning to solve.

Assignments are assigned more-or-less every week and can involve basic materials, further examination of concepts introduced and presented in class and in the textbook, brainteasers, and more challenging questions problems. Problems will be the basis for class discussions as well; be prepared to ask and answer questions and discuss the problems.

Quizzes (10%)

Each module will contain a graded quiz. These will assess students’ achievement of the learning objectives in modules - 1 hour timed.

Mini-Projects (30%)

Students will be creating and running programs using interpreters, Jupyter notebooks, other programs, and web sources.

Grading Policy

EP uses a +/- grading system (see “Grading System”, Graduate Programs catalog, p. 10).

Score RangeLetter Grade
100-98= A+
97-94= A
93-90= A−
89-87= B+
86-83= B
82-80= B−
79-77= C+
76-73= C
72-70= C−
69-67= D+
66-63= D
<63= F

Academic Policies

Deadlines for Adding, Dropping and Withdrawing from Courses

Students may add a course up to one week after the start of the term for that particular course. Students may drop courses according to the drop deadlines outlined in the EP academic calendar (https://ep.jhu.edu/student-services/academic-calendar/). Between the 6th week of the class and prior to the final withdrawal deadline, a student may withdraw from a course with a W on their academic record. A record of the course will remain on the academic record with a W appearing in the grade column to indicate that the student registered and withdrew from the course.

Academic Misconduct Policy

All students are required to read, know, and comply with the Johns Hopkins University Krieger School of Arts and Sciences (KSAS) / Whiting School of Engineering (WSE) Procedures for Handling Allegations of Misconduct by Full-Time and Part-Time Graduate Students.

This policy prohibits academic misconduct, including but not limited to the following: cheating or facilitating cheating; plagiarism; reuse of assignments; unauthorized collaboration; alteration of graded assignments; and unfair competition. Course materials (old assignments, texts, or examinations, etc.) should not be shared unless authorized by the course instructor. Any questions related to this policy should be directed to EP’s academic integrity officer at ep-academic-integrity@jhu.edu.

Students with Disabilities - Accommodations and Accessibility

Johns Hopkins University values diversity and inclusion. We are committed to providing welcoming, equitable, and accessible educational experiences for all students. Students with disabilities (including those with psychological conditions, medical conditions and temporary disabilities) can request accommodations for this course by providing an Accommodation Letter issued by Student Disability Services (SDS). Please request accommodations for this course as early as possible to provide time for effective communication and arrangements.

For further information or to start the process of requesting accommodations, please contact Student Disability Services at Engineering for Professionals, ep-disability-svcs@jhu.edu.

Student Conduct Code

The fundamental purpose of the JHU regulation of student conduct is to promote and to protect the health, safety, welfare, property, and rights of all members of the University community as well as to promote the orderly operation of the University and to safeguard its property and facilities. As members of the University community, students accept certain responsibilities which support the educational mission and create an environment in which all students are afforded the same opportunity to succeed academically. 

For a full description of the code please visit the following website: https://studentaffairs.jhu.edu/policies-guidelines/student-code/

Classroom Climate

JHU is committed to creating a classroom environment that values the diversity of experiences and perspectives that all students bring. Everyone has the right to be treated with dignity and respect. Fostering an inclusive climate is important. Research and experience show that students who interact with peers who are different from themselves learn new things and experience tangible educational outcomes. At no time in this learning process should someone be singled out or treated unequally on the basis of any seen or unseen part of their identity. 
 
If you have concerns in this course about harassment, discrimination, or any unequal treatment, or if you seek accommodations or resources, please reach out to the course instructor directly. Reporting will never impact your course grade. You may also share concerns with your program chair, the Assistant Dean for Diversity and Inclusion, or the Office of Institutional Equity. In handling reports, people will protect your privacy as much as possible, but faculty and staff are required to officially report information for some cases (e.g. sexual harassment).

Course Auditing

When a student enrolls in an EP course with “audit” status, the student must reach an understanding with the instructor as to what is required to earn the “audit.” If the student does not meet those expectations, the instructor must notify the EP Registration Team [EP-Registration@exchange.johnshopkins.edu] in order for the student to be retroactively dropped or withdrawn from the course (depending on when the "audit" was requested and in accordance with EP registration deadlines). All lecture content will remain accessible to auditing students, but access to all other course material is left to the discretion of the instructor.